Characteristics of the new Power System Dynamic Simulator in NEPLAN

BCP

Busarello + Cott + Partner

June 26, 2008

- 同 ト - 三 ト - 三

Hybrid System Representation

Differential Switched-Algebraic State Reset Equations (DSAR)

$$\begin{split} \dot{x} &= f(x,y,z) \\ \dot{z} &= 0 \\ 0 &= g^{(0)}(x,y,z) \\ 0 &= \begin{cases} g^{(i^-)}(x,y,z) & y_{s,i} < 0 \\ g^{(i^+)}(x,y,z) & y_{s,i} > 0 \end{cases} \quad i = 1,...,s \\ z^+ &= h_j(x^-,y^-,z^-) \quad y_{r,j} = 0 \quad j = 1,...,r \end{split}$$

- DSAR captures the dynamic, non-linear and hybrid nature of power system components
- Implemented in MATLAB and NEPLAN

< ロ > < 同 > < 回 > < 回 > < 回 > <

Hybrid System Representation

• Differential Switched-Algebraic State Reset Equations (DSAR)

$$\begin{split} \dot{x} &= f(x,y,z) \\ \dot{z} &= 0 \\ 0 &= g^{(0)}(x,y,z) \\ 0 &= \begin{cases} g^{(i^-)}(x,y,z) & y_{s,i} < 0 \\ g^{(i^+)}(x,y,z) & y_{s,i} > 0 \end{cases} \quad i = 1,...,s \\ z^+ &= h_j(x^-,y^-,z^-) \quad y_{r,j} = 0 \quad j = 1,...,r \end{split}$$

- DSAR captures the dynamic, non-linear and hybrid nature of power system components
- Implemented in MATLAB and NEPLAN

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hybrid System Representation

• Differential Switched-Algebraic State Reset Equations (DSAR)

$$\begin{split} \dot{x} &= f(x,y,z) \\ \dot{z} &= 0 \\ 0 &= g^{(0)}(x,y,z) \\ 0 &= \begin{cases} g^{(i^-)}(x,y,z) & y_{s,i} < 0 \\ g^{(i^+)}(x,y,z) & y_{s,i} > 0 \end{cases} \quad i = 1,...,s \\ z^+ &= h_j(x^-,y^-,z^-) \quad y_{r,j} = 0 \quad j = 1,...,r \end{split}$$

- DSAR captures the dynamic, non-linear and hybrid nature of power system components
- Implemented in MATLAB and NEPLAN

< ロ > < 同 > < 回 > < 回 >

Implementational Issues

- Implementations in
 - MATLAB ODE Solvers
 - NEPLAN Trapezoidal, Gear's Method
- Simulation Process
 - Simultaneous solution of DAE's
 - Sparse Matrix Solution Techniques
- Interface Functions for the Simulation Kernel
 - MATLAB M-code of the model
 - NEPLAN DLL of the Model
- Model Creation
 - Automatic Code Generation

< ロ > < 同 > < 回 > < 回 >

Implementational Issues

- Implementations in
 - MATLAB ODE Solvers
 - NEPLAN Trapezoidal, Gear's Method
- Simulation Process
 - Simultaneous solution of DAE's
 - Sparse Matrix Solution Techniques
- Interface Functions for the Simulation Kernel
 - MATLAB M-code of the model
 - NEPLAN DLL of the Model
- Model Creation
 - Automatic Code Generation

Implementational Issues

- Implementations in
 - MATLAB ODE Solvers
 - NEPLAN Trapezoidal, Gear's Method
- Simulation Process
 - Simultaneous solution of DAE's
 - Sparse Matrix Solution Techniques
- Interface Functions for the Simulation Kernel
 - MATLAB M-code of the model
 - NEPLAN DLL of the Model
- Model Creation
 - Automatic Code Generation

Implementational Issues

- Implementations in
 - MATLAB ODE Solvers
 - NEPLAN Trapezoidal, Gear's Method
- Simulation Process
 - Simultaneous solution of DAE's
 - Sparse Matrix Solution Techniques
- Interface Functions for the Simulation Kernel
 - MATLAB M-code of the model
 - NEPLAN DLL of the Model
- Model Creation
 - Automatic Code Generation

Characteristics Dynamic Simulation Modes in NEPLAN Mathematical Representation Implemented Platforms and Tools Example

Automatic Code Generation

Characteristics Dynamic Simulation Modes in NEPLAN Mathematical Representation Implemented Platforms and Tools Example

Tap Changing Transformer

э.

- As long as the voltage measured at the high-voltage end of the transformer is within the allowed deadband or the tap is at the upper limit, the timer is blocked.
- The timer will start to run if the voltage gets outside the deadband.
- If the timer reaches the time set for tap delaying, a tap change will occur and the timer will be reset but not necessarily blocked.
- Blocking and resetting of the timer takes place if the voltage moves back to within the deadband.

- As long as the voltage measured at the high-voltage end of the transformer is within the allowed deadband or the tap is at the upper limit, the timer is blocked.
- The timer will start to run if the voltage gets outside the deadband.
- If the timer reaches the time set for tap delaying, a tap change will occur and the timer will be reset but not necessarily blocked.
- Blocking and resetting of the timer takes place if the voltage moves back to within the deadband.

- As long as the voltage measured at the high-voltage end of the transformer is within the allowed deadband or the tap is at the upper limit, the timer is blocked.
- The timer will start to run if the voltage gets outside the deadband.
- If the timer reaches the time set for tap delaying, a tap change will occur and the timer will be reset but not necessarily blocked.
- Blocking and resetting of the timer takes place if the voltage moves back to within the deadband.

- As long as the voltage measured at the high-voltage end of the transformer is within the allowed deadband or the tap is at the upper limit, the timer is blocked.
- The timer will start to run if the voltage gets outside the deadband.
- If the timer reaches the time set for tap delaying, a tap change will occur and the timer will be reset but not necessarily blocked.
- Blocking and resetting of the timer takes place if the voltage moves back to within the deadband.

Tap Changing Transformer Logic ⇒ DSAR Structure

%-----

definitions: %------

dynamic states timer discrete_states N timeron external_states edl eql idl iql ed2 eq2 id2 iq2 internal_states Vt parameters Vlow Nmax Ttap Nstep events +insideDB =outsideDB +tapmax_ind -t_until_tapchange

%-----

dt(timer) = timeron

genations: g = period = (Vt - VLow) g1 = insideD8 - (Vt - VLow) g2 = outsideD8 - (Vt - VLow) g3 = t until tapchange - (Ytap - timer) g4 = tapasz ind - (Vt - Numa + Ntep/2) g5 = ed2 - ed1% g6 = ed1 + id2% g6 = id1 + id2% g6 = id1 + id2%

< ロ > < 同 > < 三 > < 三 > -

Characteristics

Dynamic Simulation Modes in NEPLAN

Mathematical Representation Implemented Platforms and Tools Example

Simulation Results

• EMT - (Electromagnetic Transients)

• Instantaneous Values of the electrical quantities

$$x(\tau) = \Re \left\{ \sum_{k=0}^{\infty} X_k(t) \cdot e^{jk\omega_s \tau} \right\}$$

- Accurate, Inefficient
- RMS (Transient Stability)
 - Fundamental Frequency Components of the electrical quantities $x(\tau) \approx \Re \left\{ \sum_{k=1} X_k(t) \cdot e^{jk\omega_s \tau} \right\}$ • Efficient, Not accurate
- DYNPH (Dynamic Phasor Representation)
 - Selected Frequency Components of the electrical quantities $x(\tau) \approx \Re \left\{ \sum_{k \in K} X_k(t) \cdot e^{jk\omega_k \tau} \right\}$
 - Efficient, Accurate

- EMT (Electromagnetic Transients)
 - Instantaneous Values of the electrical quantities

$$x(\tau) = \Re\left\{\sum_{k=0}^{\infty} X_k(t) \cdot e^{jk\omega_s\tau}\right\}$$

Accurate, Inefficient

- RMS (Transient Stability)
 - Fundamental Frequency Components of the electrical quantities $x(\tau) \approx \Re \left\{ \sum_{k=1} X_k(t) \cdot e^{jk\omega_R \tau} \right\}$ • Efficient, Not accurate
- DYNPH (Dynamic Phasor Representation)
 - Selected Frequency Components of the electrical quantities $x(\tau) \approx \Re \left\{ \sum_{k \in K} X_k(t) \cdot e^{jk\omega_k \tau} \right\}$
 - Efficient, Accurate

- EMT (Electromagnetic Transients)
 - Instantaneous Values of the electrical quantities

$$x(\tau) = \Re\left\{\sum_{k=0}^{\infty} X_k(t) \cdot e^{jk\omega_s\tau}\right\}$$

- Accurate, Inefficient
- RMS (Transient Stability)
 - Fundamental Frequency Components of the electrical quantities $x(\tau) \approx \Re \left\{ \sum_{k=1} X_k(t) \cdot e^{jk\omega_s \tau} \right\}$ • Efficient, Not accurate
- DYNPH (Dynamic Phasor Representation)
 - Selected Frequency Components of the electrical quantities $x(\tau) \approx \Re \left\{ \sum_{k \in K} X_k(t) \cdot e^{jk\omega_k \tau} \right\}$
 - Efficient, Accurate

< ロ > < 同 > < 回 > < 回 >

- EMT (Electromagnetic Transients)
 - Instantaneous Values of the electrical quantities

$$x(\tau) = \Re \left\{ \sum_{k=0}^{\infty} X_k(t) \cdot e^{jk\omega_s \tau} \right\}$$

Accurate, Inefficient

RMS - (Transient Stability)

- Fundamental Frequency Components of the electrical quantities $x(\tau) \approx \Re \left\{ \sum_{k=1} X_k(t) \cdot e^{jk\omega_s \tau} \right\}$ • Efficient, Not accurate
- DYNPH (Dynamic Phasor Representation)
 - Selected Frequency Components of the electrical quantities $x(\tau) \approx \Re \left\{ \sum_{k \in K} X_k(t) \cdot e^{jk\omega_k \tau} \right\}$
 - Efficient, Accurate

- EMT (Electromagnetic Transients)
 - Instantaneous Values of the electrical quantities

$$x(\tau) = \Re \left\{ \sum_{k=0}^{\infty} X_k(t) \cdot e^{jk\omega_s \tau} \right\}$$

- Accurate, Inefficient
- RMS (Transient Stability)
 - Fundamental Frequency Components of the electrical quantities

$$\begin{aligned} x(\tau) &\approx \Re \left\{ \sum_{k=1} X_k(t) \cdot e^{jk\omega_s \tau} \right\} \\ \text{Efficient, Not accurate} \end{aligned}$$

- DYNPH (Dynamic Phasor Representation)
 - Selected Frequency Components of the electrical quantities $x(\tau) \approx \Re \left\{ \sum_{k \in K} X_k(t) \cdot e^{jk\omega_k \tau} \right\}$
 - Efficient, Accurate

A (1) > A (1) > A

- EMT (Electromagnetic Transients)
 - Instantaneous Values of the electrical quantities

$$x(\tau) = \Re \left\{ \sum_{k=0}^{\infty} X_k(t) \cdot e^{jk\omega_s \tau} \right\}$$

- Accurate, Inefficient
- RMS (Transient Stability)
 - Fundamental Frequency Components of the electrical quantities

$$x(\tau) \approx \Re \left\{ \sum_{k=1} X_k(t) \cdot e^{jk\omega_s \tau} \right\}$$

- Efficient, Not accurate
- DYNPH (Dynamic Phasor Representation)
 - Selected Frequency Components of the electrical quantities $r(\tau) \approx \Re \left\{ \sum X_{\tau}(t) \cdot e^{jk\omega_{\pi}\tau} \right\}$
 - Efficient, Accurate

- EMT (Electromagnetic Transients)
 - Instantaneous Values of the electrical quantities

$$x(\tau) = \Re \left\{ \sum_{k=0}^{\infty} X_k(t) \cdot e^{jk\omega_s \tau} \right\}$$

- Accurate, Inefficient
- RMS (Transient Stability)
 - Fundamental Frequency Components of the electrical quantities

$$x(\tau) \approx \Re \left\{ \sum_{k=1} X_k(t) \cdot e^{jk\omega_s \tau} \right\}$$

- Efficient, Not accurate
- DYNPH (Dynamic Phasor Representation)
 - Selected Frequency Components of the electrical quantities $x(\tau) \approx \Re \left\{ \sum_{k \in K} X_k(t) \cdot e^{jk\omega_s \tau} \right\}$ • Efficient, Accurate

- EMT (Electromagnetic Transients)
 - Instantaneous Values of the electrical quantities

$$x(\tau) = \Re \left\{ \sum_{k=0}^{\infty} X_k(t) \cdot e^{jk\omega_s \tau} \right\}$$

- Accurate, Inefficient
- RMS (Transient Stability)
 - Fundamental Frequency Components of the electrical quantities

$$x(\tau) \approx \Re \left\{ \sum_{k=1} X_k(t) \cdot e^{jk\omega_s \tau} \right\}$$

- Efficient, Not accurate
- DYNPH (Dynamic Phasor Representation)
 - Selected Frequency Components of the electrical quantities

$$x(\tau) \approx \Re \left\{ \sum_{k \in K} X_k(t) \cdot e^{jk\omega_s \tau} \right\}$$

Efficient Accurate

Efficient, Accurate

- EMT (Electromagnetic Transients)
 - Instantaneous Values of the electrical quantities

$$x(\tau) = \Re \left\{ \sum_{k=0}^{\infty} X_k(t) \cdot e^{jk\omega_s \tau} \right\}$$

- Accurate, Inefficient
- RMS (Transient Stability)
 - Fundamental Frequency Components of the electrical quantities

$$x(\tau) \approx \Re \left\{ \sum_{k=1} X_k(t) \cdot e^{jk\omega_s \tau} \right\}$$

- Efficient, Not accurate
- DYNPH (Dynamic Phasor Representation)
 - Selected Frequency Components of the electrical quantities

$$x(\tau) \approx \Re \left\{ \sum_{k \in K} X_k(t) \cdot e^{jk\omega_s \tau} \right\}$$

Efficient, Accurate

A D b A A b A b b

Reference Frame Representation

● Balanced Conditions ⇒ DQ0 Representation

● Unbalanced Conditions ⇒ ABC Representation

A (10) > A (10) > A (10)

Reference Frame Representation

- Balanced Conditions ⇒ DQ0 Representation
- Unbalanced Conditions ⇒ ABC Representation

/□ > < ∃ > < ∃